Natural Convection in a Differentially Heated Square Enclosure with a Solid Polygon

نویسندگان

  • R. Roslan
  • H. Saleh
  • I. Hashim
چکیده

The aim of the present numerical study is to analyze the conjugate natural convection heat transfer in a differentially heated square enclosure containing a conductive polygon object. The left wall is heated and the right wall is cooled, while the horizontal walls are kept adiabatic. The COMSOL Multiphysics software is applied to solve the dimensionless governing equations. The governing parameters considered are the polygon type, 3 ≤ N ≤ ∞, the horizontal position, 0.25 ≤ X 0 ≤ 0.75, the polygon size, 0 ≤ A ≤ π/16, the thermal conductivity ratio, 0.1 ≤ K r ≤ 10.0, and the Rayleigh number, 10(3) ≤ Ra ≤ 10(6). The critical size of the solid polygon was found exists at low conductivities. The heat transfer rate increases with the increase of the size of the solid polygon, until it reaches its maximum value. Here, the size of the solid polygon is reaches its critical value. Further, beyond this critical size of the solid polygon, will decrease the heat transfer rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy Generation of Double Diffusive Natural Convection in a Three Dimensional Differentially Heated Enclosure

Entropy generation of double diffusive natural convection in a three dimensional differentially heated enclosure has been performed numerically. Vertical walls of enclosure are heated differentially and remaining walls are adiabatic. The obtained results were presented via iso-concentration, iso-temperatures, velocity vector projection, particle trajectories, velocity profiles, iso-entropy, loc...

متن کامل

Conjugate Heat Transfer in an Enclosure Containing a Polygon Object

Abstract—Conjugate natural convection in a differentially heated square enclosure containing a polygon shaped object is studied numerically in this article. The effect of various polygon types on the fluid flow and thermal performance of the enclosure is addressed for different thermal conductivities. The governing equations are modeled and solved numerically using the built-in finite element m...

متن کامل

Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure

This investigation is a three dimensional comprehensive heat transfer analysis for partially differentially heated enclosure with the vertical fin mounted on the hot wall. The thermal lattice Boltzmann based on D3Q19 method is utilized to illustrate the effects of vertical fins and nanoparticles on the flow and thermal fields. The effects of Rayleigh number and different arrangement of fins on ...

متن کامل

Convection in a Tilted Square Enclosure with Various Boundary Conditions and Having Heat Generating Solid Body at its Center

In this study free convection flow and heat transfer of a fluid inside a tilted square enclosure having heat conducting and generating solid body positioned in the center of the enclosure with various thermal boundary conditions has been investigated numerically. The governing equations are transformed into non-dimensional form and the resulting partial differential equations are solved by Fini...

متن کامل

A hybrid scheme of single relaxation time lattice Boltzmann and finite volume methods coupled with discrete ordinates method for combined natural convection and volumetric radiation in an enclosure

This paper is focused on the application of hybrid Single relaxation time lattice Boltzmann and finite volume methods in conjunction with discrete ordinates method to simulate coupled natural convection and volumetric radiation in differentially heated enclosure, filled with an absorbing, emitting and non-scattering gray medium. In this work, the velocity and temperature fields are calculated u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014